An Expansion Theorem Involving H-Function of Several Complex Variables
نویسندگان
چکیده
منابع مشابه
Complex Dynamics in Several Variables
1. Motivation 117 2. Iteration of Maps 118 3. Regular Versus Chaotic Behavior 119 4. The Horseshoe Map and Symbolic Dynamics 120 5. Hénon Maps 123 6. Properties of Horseshoe and Hénon Maps 126 7. Dynamically Defined Measures 127 8. Potential Theory 129 9. Potential Theory in One-Variable Dynamics 131 10. Potential Theory and Dynamics in Two Variables 133 11. Currents and Applications to Dynamic...
متن کاملBohr’s Power Series Theorem in Several Variables
Generalizing a classical one-variable theorem of Bohr, we show that if an n-variable power series has modulus less than 1 in the unit polydisc, then the sum of the moduli of the terms is less than 1 in the polydisc of radius 1/(3 √ n ). How large can the sum of the moduli of the terms of a convergent power series be? Harald Bohr addressed this question in 1914 with the following remarkable resu...
متن کاملSome inequalities in connection to relative orders of entire functions of several complex variables
Let f, g and h be all entire functions of several complex variables. In this paper we would like to establish some inequalities on the basis of relative order and relative lower order of f with respect to g when the relative orders and relative lower orders of both f and g with respect to h are given.
متن کاملA short introduction to several complex variables
This text is a short two hour introduction into the theory of several complex variables. These lectures were given in May 1996 at Caltech to the class Ma 108 substituting for someone else. As prerequisite, the topic requires some familiarity with complex analysis in one dimension. The higher dimensional generalization of complex analysis in one variables is an important part of mathematics. Our...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Analysis
سال: 2013
ISSN: 2314-498X,2314-4998
DOI: 10.1155/2013/353547